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Introduction
Persistent organic pollutants (POPs) are 
ubiquitous environmental contaminants. 
They include polychlorinated dibenzo-p-
dioxins (PCDDs), polychlorinated dibenzo-
furans (PCDFs), polychlorinated biphenyls 
(PCBs), and organochlorine pesticides. 
2,3,7,8-Tetrachlorodibenzodioxin (TCDD), 
a representative of the dioxin chemical family, 
is unintentionally produced during chlorine 
bleaching processes, drinking water chlori-
nation, and incineration processes [Agency 
for Toxic Substances and Disease Registry 
(ATSDR) 2012]. 4,4´-Dichlorodiphenyl-
dichloroethylene (p,p´-DDE) is a metabolite 
of DDT that has been used as an insecticide 
for insect vectors of malaria and typhus 
(ATSDR 2008). Polychlorinated biphenyls 
(PCBs) are industrial chemicals principally 
used as heat exchange fluids in transformers 
and capacitors that were banned in the 
United States in 1977 (ATSDR 2011).

Epidemiological studies have reported 
associations between POPs and metabolic 
diseases such as Type 2 diabetes (T2D), 
obesity, and metabolic syndrome, but the 
potential underlying mechanism(s) are not 
known (Langer et al. 2014; Lee et al. 2006, 

2010, 2011; Rylander et al. 2005; Suzuki 
et al. 2008). The three POPs evaluated in 
the present study (TCDD, PCB 153, and 
p,p´-DDE) have been associated with meta-
bolic disorders in observational studies, but 
the potential molecular mechanisms that 
might underlie endocrine disruption and 
disease development are far from understood 
(Everett et al. 2007; Henriksen et al. 1997; Lee 
et al. 2014; Longnecker and Michalek 2000; 
Magliano et al. 2014; Rignell-Hydbom et al. 
2007; Turyk et al. 2009; Wang et al. 2008).

Because metabolic diseases are increasing 
in frequency throughout the world, further 
investigation and understanding of the possi-
bility that exposure to POPs contributes to 
the etiology of diabetes, obesity, and cardio-
vascular disease is critical (Taylor et al. 2013; 
Thayer et al. 2012). Metabolic syndrome may 
affect up to 1 in 5 people, and its prevalence 
increases with age (Paoletti et al. 2006). It is 
estimated that ≤ 25% of the U.S. population 
has metabolic syndrome (Ford et al. 2004).

Researchers have hypothesized that low-
level POP exposure can cause metabolic 
changes through a network of pathways, 
including increased insulin resistance and 
obesity preceding the development of T2D 

(Barouki et al. 2012; Barrett 2013; Lee 
et al. 2014; Taylor et al. 2013). Within this 
network, different POPs might also cause 
metabolic syndrome through slightly over-
lapping pathways to cause disturbances in 
glucose homeostasis. Such disturbances 
include inhibition of insulin action and 
induced down-regulation of master regula-
tors of lipid homeostasis. The situation is 
further complicated by the realization that 
POP-induced alterations in epigenetic regula-
tory mechanisms may occur during sensitive 
developmental periods and lead to diseases 
such as obesity and T2D later in life (Barouki 
et al. 2012).

In toxicology, systems biology facilitates 
the identification of important pathways and 
molecules from large data sets. These tasks can 
be extremely laborious when performed using 
a classical literature search. Computational 
systems biology offers more advantages than 
simply providing a high-throughput literature 
search engine; these tools may provide the 
basis for establishing hypotheses on potential 
links between environmental chemicals and 
human diseases. Comprehensive databases 
containing information on networks of human 
protein–protein interactions and protein–
disease associations make it possible to identify 
such links. Experimentally determined target 
data for the specific chemical of interest can be 
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Background: A number of epidemiological studies have identified statistical associations between 
persistent organic pollutants (POPs) and metabolic diseases, but testable hypotheses regarding 
underlying molecular mechanisms to explain these linkages have not been published.

oBjectives: We assessed the underlying mechanisms of POPs that have been associated with 
metabolic diseases; three well-known POPs [2,3,7,8-tetrachlorodibenzodioxin (TCDD), 
2,2´,4,4´,5,5´-hexachlorobiphenyl (PCB 153), and 4,4´-dichlorodiphenyldichloroethylene 
(p,p´-DDE)] were studied. We used advanced database search tools to delineate testable hypotheses 
and to guide laboratory-based research studies into underlying mechanisms by which this POP 
mixture could produce or exacerbate metabolic diseases.

Methods: For our searches, we used proprietary systems biology software (MetaCore™/
MetaDrug™) to conduct advanced search queries for the underlying interactions database, followed 
by directional network construction to identify common mechanisms for these POPs within two or 
fewer interaction steps downstream of their primary targets. These common downstream pathways 
belong to various cytokine and chemokine families with experimentally well-documented causal 
associations with type 2 diabetes.

conclusions: Our systems biology approach allowed identification of converging pathways 
leading to activation of common downstream targets. To our knowledge, this is the first study 
to propose an integrated global set of step-by-step molecular mechanisms for a combination 
of three common POPs using a systems biology approach, which may link POP exposure to 
diseases. Experimental evaluation of the proposed pathways may lead to development of predic-
tive biomarkers of the effects of POPs, which could translate into disease prevention and effective 
clinical treatment strategies.
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uploaded and superimposed on these networks 
to obtain additional information that can be 
used to establish hypotheses on links between 
the chemical and human diseases. Such infor-
mation can also be used to design rational 
animal- and cell-based laboratory experiments 
to test the established hypotheses.

In this study, we examined potential 
linkages for combined exposures to three 
specific POPs, cellular pathway alterations, and 
metabolic disturbances related to the develop-
ment of important clinical outcomes. We used 
an integrated global approach that brought 
together a) predictive chemical analyses based 
on compound structure and b) knowledge 
bases of chemogenomics data associating 
compounds with biological and toxicological 
properties. We then performed an in silico 
evaluation of the possible joint effects of 
POPs on metabolic pathways that could lead 
to metabolic diseases. We sought to discover 
common downstream activation targets for all 
three POPs as a mixture. Although inhibitory 
targets were also analyzed, we chose to focus on 
the genes that could ultimately be  up- regulated 
and lead to increased abundance on the 
protein level. The rationale for this focus was 
to set the stage for the discovery of screening 
biomarkers, particularly those present in easily 
accessible tissues/fluids, the accessibility of 
which could be improved when increased in 
abundance, as opposed to depleted. It is hoped 
that these data will stimulate the formation of 
new, testable hypotheses to address some of 
the data gaps previously identified by Barrett 
(2013), La Merrill et al. (2013), and Taylor 
et al. (2013).

Methods
Three POPs (p,p´-DDE, TCDD, and PCB 
153) were selected for investigation in this 
study because they are commonly detected 
in the environment and in human tissues. 
Based upon data from the epidemiological 
and data mining literature noted above, they 
have also been linked with metabolic diseases 
such as T2D (Everett et al. 2007; Henriksen 
et al. 1997; Lee et al. 2010; Longnecker and 
Michalek 2000; Turyk et al. 2009; Wang 
et al. 2008).

The majority of available POP studies 
have focused on these three POPs on an indi-
vidual basis. To our knowledge, there are no 
published studies on their combined potential 
inter active effects at the molecular level in 
relation to clinical disease outcomes.

The Pathway Analysis Tools: 
Metacore™/Metadrug™
The molecular structure (.mol) files of three 
POPs [p,p´-DDE, TCDD, and PCB 153 
(Figure 1)] were separately uploaded to 
MetaCore™/MetaDrug™, a proprietary 
systems biology software solution (Thomson 

Reuters; originally developed by GeneGo, 
Inc.). This software is built on a proprietary 
database (MetaBase™) to allow functional and 
network analysis of primary and secondary 
effects of any query compound in the context 
of manually curated molecular interactions 
and pathways (Ekins et al. 2007).

MetaCore™/MetaDrug™ are analytical 
tools built on top of a manually curated 
database of literature findings that support 
various types of molecular interactions and 
ontologies, including disease relationships. 
These tools help a user to analyze informa-
tion from experimental results or to mine 
the underlying content from the MetaBase™ 
database content directly.

Advanced Search is a java application 
tool in MetaCore™ that facilitates searching 
combined information, for example, “find 
all compounds that inhibit EGFR with IC50 
< 1 μM.” Using Advanced Search allows us 
to create a Boolean query and to retrieve the 
results. A detailed methodological description 
of the systems biology procedures and 
protocols for using the software are available 
(http://lsresearch.thomsonreuters.com/). 

When querying content from MetaBase™, 
Advanced Search allows us to differentiate 
low- and high-trust annotation information 
behind interactions. “High-trust” content 
has been confirmed to have published 
small-scale experimental evidence (e.g., 
co-immunoprecipitation plus luciferase reporter 
assay). Low-trust interactions have only been 
validated via high-throughput screening/
co-expression or predictive analysis studies 
and lack more rigorous experimental evidence. 
Molecular entities can affect a target directly 
and indirectly. Mechanisms used to describe 
direct physical interactions include binding, 
covalent modification, phosphorylation, and 
so on. Indirect mechanisms include influence 
on expression, co-regulation of transcription, 
unspecified, and others, as stated in the 
legend. Only high-trust direct interactions 
with known effects (activation or inhibition) 
were used in this study.

POP Pathway Analysis
To map all of the possible pathways from 
the three selected POPs to their downstream 
targets, primary targets (i.e., the targets of 
direct chemical actions that lead to a response 
in the cells of the mammalian organism; 
all other targets of the chemical are consid-
ered secondary) were first determined using 
MetaCore™ and MetaDrug™ content. Of 
those primary targets, only direct binding 
targets that had further downstream inter-
actions were considered. To reduce the 
complexity presented by primary targets that 
already participate in thousands of anno-
tated molecular interactions, the Advanced 
Search tool was used. This tool allowed the 

construction of direct database queries of 
interactions leading from primary/direct 
targets of each POP to common targets shared 
by all three POPs in three or fewer steps and 
with an inferred activating effect. These condi-
tions meant that from the compound itself, 
the allowed network depth/distance would 
be three or fewer steps. The focus on down-
stream activation targets was presumed to be 
of greatest utility if such targets were to be 
used for detection as biomarkers. All combina-
tions of path lengths within three interactions 
were considered. For example, some targets 
may have been two steps downstream of one 
POP but three steps downstream of the other 
two POPs. For all of the multi-step paths, the 
assumption was made that to achieve down-
stream activation, not only activation inter-
actions but also inhibitory interactions could 
be considered, provided that they added up 
to the final effect of activation. For example, 
inhibition of an inhibitor can result in subse-
quent activation. Thus, all combinations of the 
following interaction paths were considered in 
our search queries:

Two-step paths:
• activation, activation
• inhibition, inhibition

Three-step paths:
• activation, activation, activation
• activation, inhibition, inhibition
• inhibition, inhibition, activation
• inhibition, activation, inhibition

Note that there were no common primary 
targets for all three POPs; hence, no one-step 
paths were obtained in this analysis.

The resulting combined list of poten-
tial common activation targets was used 
for network construction. The “shortest 
paths” network-building option was used. 
The maximum number of interaction steps 
is defined by the user from a range of 1 to 
10 interaction steps and was set to three as 
a maximum in this study; the algorithm 
attempts to build the shortest direct paths 
between selected objects using up to the 
maximum number of interactions defined by 
the user. This operation yielded the resulting 
interconnected network diagram. Interaction 
effects were then checked for concordance 
(or agreement, to make sure there were no 
conflicting inter actions). Only direct acti-
vation or inhibition interactions were used 
for network construction. “Direct” refers to 
small-scale molecular physical interactions, 
as described earlier, the effects of which are 
either activation or inhibition, meaning that 
interactions that are indirect or that have an 
unspecified effect would not be considered by 
the shortest-paths algorithm. Only concor-
dantly regulated molecules (also referred to 
as network nodes) were displayed on the final 
network, with only those interactions that 
led to downstream activation. Therefore, the 
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terminal nodes (those genes/proteins that 
only had upstream interactions) had only 
those sequences of interactions leading toward 
them that would result in activation. Even 
though advanced queries produced target 
lists (queries retrieve lists of genes), network 
building was still needed for a visual repre-
sentation of the interaction space that met the 
requirements of the queries and mechanisti-
cally tied the POPs to the targets. Network 
building was also needed to manually check 
and remove any signaling conflicts that arose 
between intermediate nodes along the queried 
paths. For example, if gene A is a logical 
linker downstream of a POP target and its 
downstream common activation target but 
is regulated in the opposite direction by the 
primary target of another POP, then a mixed 
message would result, and gene A would have 
to be removed from the final network. In 
other words, a mixed message occurs when an 
intermediate protein receives a signal from a 
POP through its target to behave in one way 

(for example, to activate or induce signaling), 
but through a second target for another 
POP, the effect is in opposition (to inhibit 
or suppress signaling); thus, the intermediate 
protein receives conflicting signals.

The final network was narrowed to only 
those downstream targets associated with the 
following: diabetes/insulin resistance (IR), 
obesity, and metabolic syndrome X. Finally, 
to clarify the specific signaling paths, the 
final network was subdivided into subnet-
works with smaller portions of information 
based on one downstream target at a time for 
increased resolution.

Results

Interaction Queries and Network 
Construction
Starting with the three nodes that represented 
TCDD, PCB 153, and p,p´-DDE, we identi-
fied primary targets using advanced database 
search queries, followed by directional network 

construction. Because these three POPs are 
so structurally different, they bind different 
primary targets: the pregnane X receptor 
(PXR) for PCB 153, the androgen receptor 
(AR) for p,p´-DDE, and the aryl hydrocarbon 
receptor (AhR) for TCDD. The differ-
ence in targets suggested different modes of 
action and downstream effects for these three 
chemicals. However, with the addition of 
only one or two more interaction steps, the 
literature-based pathway reconstruction/
modeling approach made it possible to deter-
mine which activation targets of one or two 
of these compounds could also be activated 
by the third compound. Such converging 
common activation targets were identified 
from cumulative results obtained from the 
Advanced Search queries: 349 concordance 
targets were identified in three steps or fewer 
(data not shown) and had known positive 
disease association. Only high-trust direct 
physical interactions of known effects (activa-
tion or inhibition) were used for the queries 

Figure 1. Proposed global network for potential converging genes associated with diabetes/insulin resistance, obesity, or metabolic syndrome X, and the 
three POPs. Thick lines highlight the closest interactions. Large gray circles represent union genes. Small red circles indicate the intersection genes for the 
three diseases. 
Symbols defined by MetaCore™ at http://lsresearch.thomsonreuters.com/static/uploads/files/2014-05/MetaCoreQuickReferenceGuide.pdf: green arrows, activating interactions; red 
arrows, inhibiting interactions; POPs, purple hexagons; catalytic factors, yellow; transcription factors, red; cytokines and lipoproteins, green; receptors and adaptor proteins, blue.



POPs linkages to common metabolic diseases

Environmental Health Perspectives • volume 124 | number 7 | July 2016 1037

and for network building. Networks were built 
downstream of all three POPs using three steps 
or fewer for Dijkstra’s shortest paths algorithm 
(Dijkstra 1959). All inter action effects were 
then checked for concordance on the final 
network representation.

Proposed Final Network
The connectivity of the network revealed 
that six targets [interleukin 6 (IL-6), IL-8, 
RelA (p65), c-Jun, FKHR, and Cyclin D1]
were activated by the three POPs in 2.33 
steps on average (two steps from two of the 
POPs and one additional step from the third 
POP (thus, three steps from the third POP); 
therefore, the average of each set of chemical 
steps was (2 + 2 + 3)/3 = 2.33. The network 
also showed that 35 targets were activated 
by the three POPs in 2.67 steps on average 
[two steps from one of the chemicals and 
one additional step from the two others, 
(2 + 3 + 3)/3 = 2.67], yielding a total of 41 
targets that could be activated by the three 
POPs in fewer than three network interaction 
steps on average.

The complete final network (Figure 1) 
reveals the genes associated with diabetes/
insulin resistance, or obesity, or metabolic 
syndrome X (union, large gray circles around 
gene icons). The genes that also have a small 
circle (tagging the gene’s icon on the top 
right) represent the annotated associations 
with all three diseases (intersection). Based on 
this systems biology–generated global network 
(Figure 1), a joint mechanism of action was 
proposed for the combined exposure to the 
three POPs and for the additive effects that 
may be anticipated. Figure 1 shows some 
intermediate cross-interactions between the 
downstream targets (shown in green). These 
common activation processes can influence or 
activate each other and imply even more func-
tional and mechanistic connectivity/synergy. 
Although this systems  biology– generated 
global network cannot be considered as proof 
of causal linkages without further experi-
mental validation, it provides justification 
for the mechanistic hypothesis and contrib-
utes new information potentially linking 
available published toxicology and disease 
 information domains.

Delineating Subpathways from 
the Network
To clarify specific signaling pathways, the final 
global network was divided into subnetworks 
with smaller portions of information for 
increased resolution. For example, IL-8 can be 
activated by p,p´-DDE via the AR (inhibition 
of an inhibitor) and activated by TCDD via 
the AhR (activation of an activator) (Vogel 
et al. 2007) (Figure 2). PCB 153 is not known 
to activate IL-8 directly or through its primary 
target (the PXR). However, with evaluation 

of one additional step, a plausible mecha-
nism was revealed: CREB1 can be activated 
by PCB 153 through the PXR (inhibition of 
an inhibitor) via documented direct binding 
interactions (Kodama et al. 2007; Tabb et al. 
2004). CREB1 can then lead to activation of 
IL-8 via well-documented promoter binding 
(Mayer et al. 2013) (Figure 2). The potential 
link between IL-8 and PCB 153 is noteworthy 
because it establishes a link between PCB 153 
and IL-8 through CREB1 by allowing one 
immediate step.

IL-6 is well known to promote inflam-
mation and proinflammatory effects (Scheller 
et al. 2011). As illustrated in Figure 3, our 
analysis suggests that that IL-6 can be directly 
activated by TCDD via the AhR/ARNT 
complex (activation of an activator); AhR and 
ARNT are close neighbors of IL-6 that often 
act together in many pathways. AhR can also 
activate RelA, which can activate IL-6. PCB 
153 and p,p´-DDE can inhibit RelA (inhibi-
tion of an inhibitor) via PXR and AR, respec-
tively, and then RelA activates IL-6. There 
is a direct pathway for activation of IL-6 
from p,p´-DDE via the AR (inhibition of an 
inhibitor). IL-6 could be activated from PCB 
153 in the same pathway as that described for 
IL-8 (Kodama et al. 2007; Tabb et al. 2004).

As shown in Figure 4, our analysis 
suggests that tumor necrosis factor-alpha 
(TNF-α) can be activated by TCDD via AhR 
and RelA (activation of an activator), where 
RelA directly activates TNF-α; p,p´-DDE 
can also activate TNF-α via the AR and 
c-Jun (inhibition of an inhibitor). PCB 153 

activates TNF-α through the same pathways 
as those described for activation of IL-6 
and IL-8. PXR (inhibition of an inhibitor) 
also provides a direct path for activation of 
TNF-α from PCB 153. CREB1 could be an 
important link to these cytokine activation 
pathways. RelA could represent a common 
step in the activation of TNF-α by all of these 
individual POPs. c-Jun plays an important 
role in all of the inflammation pathways, and 
together with RelA, promotes the inflamma-
tion pathway (Ip and Davis 1998; Tak and 
Firestein 2001).

As illustrated in Figure 5, our analysis 
suggests that fetuin A can be activated by 
TCDD via the AhR and RelA (activation of 
an activator), and then RelA directly acti-
vates fetuin A. PCB 153 and p,p´-DDE can 
inhibit RelA (inhibition of an inhibitor) 
via the PXR and the AR, respectively, and 
then RelA can activate fetuin A. Again, it is 
a noteworthy observation that RelA could 
represent a common step in the activation 
of fetuin A, IL-6, and TNF-α by all of these 
POPs. Thus, the counterpart proinflamma-
tory effects of these proteins that are activated 
through intracellular signaling pathways may 
involve RelA.

Overall, the whole resulting network is 
populated with a combination of metabolic 
genes, insulin signaling, immune response 
signaling, and the inflammation cascade of 
cytokines and transcription factors. Based on 
our analysis, we hypothesize that common 
pathways that converge through the cytokines 
may contribute to inflammatory processes that 

Figure 2. Activation of IL-8. Thick lines highlight the closest interactions, and thin lines indicate interme-
diate and farther interactions.
AHR, aryl hydrocarbon receptor; PXR, pregnane X receptor. Symbols as defined by MetaCore™ at http://lsresearch. 
thomsonreuters.com/static/uploads/files/2014-05/MetaCoreQuickReferenceGuide.pdf: green arrows, activating inter-
actions; red arrows, inhibiting interactions; POPs, purple hexagons; IL-8, green symbol; transcription factors, red symbols. 
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may lead to metabolic diseases via circula-
tion and via creation of a chronic inflamma-
tory background in adipocytes and in liver 
and pancreatic tissues. These circumstances 
can lead to adipogenesis, pancreatic β-cell 
dysfunction, insulin resistance, glucose intoler-
ance, liver disease, and inability to cope with 
increased dietary intake, which over time can 
result in the development of serious metabolic 
disease phenotypes. In addition to inflamma-
tion, some cancer-associated targets are also 
present. For example, as shown in Figure 6, 
our analysis suggests that cyclin D1 and IL-8 
share common pathways. PCB 153 requires 
three steps to reach cyclin D1 (through PXR 
and CREB1); it requires the same interme-
diate steps to reach IL-8. Furthermore, cyclin 
D1 is activated by TCDD though the AhR, 
as is IL-8. Similar steps occur with the direct 
transcription methylation of the AR, which is 
then inhibited though p,p´-DDE. Thus, based 
on our analysis, we hypothesize that there is 
an overlap of mechanisms between inflamma-
tory processes and cancer development and 
progression that increases the potential for the 
carcinogenicity of mixtures of these POPs.

Discussion
By integrating the available information and 
bridging the gap between toxicology, epide-
miology, and chemistry within the world 
of disease mechanisms, we can look beyond 
the primary targets of the individual POPs 
to two or three steps down the relevant 
pathway. Analysis of molecular networks and 
all possible downstream targets is extremely 
complex. Our approach, based on mecha-
nistic annotated networks, allows identifica-
tion of common targets that are beyond the 
primary targets. Although molecular inter-
action data have been reported for individual 
POPs and have been confirmed by published 
experimental studies (Goldberg 2009, 
Kuwatsuka et al. 2014), to our knowledge, 
the data have not been previously integrated 
for a mixture of these compounds in the step-
by-step continuum and sequential manner 
described here.

For example, p,p´-DDE, TCDD, and 
PCB 153 can act as agonists or antagonists 
of the AR, the AhR, and the PXR, respec-
tively (ATSDR 2008, 2011, 2012). Thus, 
these chemicals are of specific concern for 
developing organisms that are highly sensi-
tive to hormonal changes, and exposure to 
these chemicals is critical because it could 
lead to permanent changes throughout life. 
These POPs might act over time at low levels 
of exposure during fetal or early-life periods 
and have a particular impact on health. The 
finding of potential human health effects 
from inter actions of multiple chemicals 
creates many difficulties, and there is a great 
need for reliable biomarkers of effects and of 

exposure. Nevertheless, recent reports support 
the notion that documented inter actions 
downstream of the POPs implicate each POP 
in perturbation of pathways that might lead 
to various metabolic diseases such as obesity 
and T2D (Scrivo et al. 2011).

A close look at the nuclear receptor 
signaling pathway revealed that PCB 153, 
TCDD, and p,p´-DDE have overlapping 
and interconnected pathways that have the 
potential to cause a variety of biological 
perturbations. The AhR directly activates and 

Figure 3. Activation of IL-6. Thick lines highlight the closest interactions, and thin lines indicate inter-
mediate and farther interactions. 
AHR, aryl hydrocarbon receptor; PXR, pregnane X receptor. Symbols defined by MetaCore™ at http://lsresearch. 
thomsonreuters.com/static/uploads/files/2014-05/MetaCoreQuickReferenceGuide.pdf: green arrows, activating inter-
actions; red arrows, inhibiting interactions; POPs, purple hexagons; IL-6, green symbol; transcription factors, red symbols. 

Figure 4. Activation of TNF-α. Thick lines highlight the closest interactions, and thin lines indicate interme-
diate and farther interactions. 
AHR, aryl hydrocarbon receptor; PXR, pregnane X receptor. Symbols defined by MetaCore™ at http://lsresearch. 
thomsonreuters.com/static/uploads/files/2014-05/MetaCoreQuickReferenceGuide.pdf: green arrows, activating inter actions; 
red arrows, inhibiting interactions; POPs, purple hexagons; TNF-α, green symbol; transcription factors, red symbols. 
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transcriptionally regulates expression of IL-8 
(Vogel et al. 2007), and IL-8 and TCDD were 
associated with diabetes in a cross-sectional 
analysis of data from an NHANES cohort 
(Lee et al. 2006). Our systems biology analysis 
suggests a link between PCB 153 and IL-8 
through CREB1 by one intermediate step 
from its primary target. The potential link 
between IL-8 and PCB 153 is noteworthy. 
CREB1 could be an important link to 
cytokine activation pathways. Based on our 
analysis, we can hypothesize a joint toxic 
action pathway (involving IL-8 as well as other 
cytokines) for mixtures of these three specific 
POPs that could be experimentally tested and 
extended to other POPs.

Various toxic compounds may trigger 
abnormal inflammatory responses directly 
or indirectly by interfering with the normal 
physiological functioning of cells or tissues 
(Medzhitov 2008). These effects could play a 
role in the development of insulin resistance 
and diabetes. Kim et al. (2014) analyzed the 
influence of POP concentrations on insulin 
resistance in a cross-sectional study of 
non diabetic individuals, most of whom had 
cancer. In a cross-sectional study of 39 cauca-
sians and 72 First Nations adults, Imbeault 
et al. (2012) reported a weak but significant 
association of elevated levels of POPs with cyto-
kines. Studies on POPs and human adipose 
cells showed that precursor cells and adipocytes 
were targets of POPs and that these pollutants 
mainly triggered the inflammation pathway 
(Kim et al. 2012). In a Japanese study involving 
40 patients from the Yusho poisoning incident 
and 40 controls, Kuwatsuka et al. (2014) 
found that serum levels of certain interleukins 
(IL-17, IL-1β, and IL-23) and of TNF-α were 
higher in patients who had been exposed to 
POPs, including PCBs, through consumption 
of contaminated rice oil. Circulating inflam-
matory biomarkers such as C-reactive protein 
(CRP), IL-6, TNF-α, monocyte chemotactic 
protein 1 (MCP 1), intercellular adhesion 
molecule 1 (ICAM 1), vascular cell adhesion 
protein 1 (VCAM 1), and E-selectin have been 
associated with a variety of metabolic disor-
ders and their associated outcomes (Goldberg 
2009). However, in a study population of 
72 participants, Pal et al. (2013) reported no 
significant association between POP concentra-
tions and markers of insulin resistance when 
comparing diabetic and nondiabetic individuals 
in a Northern Ontario, Canada population. 
Similarly, in a cross-sectional study of 1,016 
individuals (all 70 years of age) from Sweden, 
Kumar et al. (2014) observed no association 
between levels of POPs and proinflamma-
tory cytokines (IL-6, MCP-1, and TNF-α). 
Differences in the results between studies could 
be attributable to various factors, including 
the number of individuals in the studies, the 
presence of other diseases, gut microbiota, diet 

composition, early-life nutrition, and noncausal 
associations as a result of confounding or other 
sources of bias.

As noted previously, numerous studies 
have shown connections between cytokines 

and metabolic disease, cytokine levels and 
POPs, and POP levels and metabolic diseases. 
However, few give a clear articulation of 
the underlying mechanisms, particularly for 
mixtures of similar and dissimilar chemicals. 

Figure 5. Activation of fetuin A. Thick lines highlight the closest interactions, and thin lines indicate inter-
mediate and farther inter actions.
AHR, aryl hydrocarbon receptor; PXR, pregnane X receptor. Symbols defined by MetaCore™ at http://lsresearch. 
thomsonreuters.com/static/uploads/files/2014-05/MetaCoreQuickReferenceGuide.pdf: green arrows, activating inter actions; 
red arrows, inhibiting interactions; POPs, purple hexagons; Fetuin A, blue symbol; transcription factors, red symbols. 

Figure 6. Activation of IL-8 and cyclin D1: proposed POP mixture pathway shared by inflammation and 
cancer. Thick red and green arrows emphasize primary POP binding targets with inhibiting and activating 
effects, respectively. Yellow highlight indicates paths that needed an additional node (CREB1) to further 
converge on the same downstream targets via the PXR, whereas the AR and the AHR directly connected 
to the common downstream targets. 
AHR, aryl hydrocarbon receptor; PXR, pregnane X receptor. Symbols defined by MetaCore™ by Thomson Reuters http://
lsresearch.thomsonreuters.com/static/uploads/files/2014-05/MetaCoreQuickReferenceGuide.pdf: green arrows, activat-
ing interactions; red arrows, inhibiting interactions; POPs (TCDD, PCB 153 and p,p´-DDE), purple hexagons, transcription 
factors, red symbols; cyclin D1, blue symbol; IL-8, green symbol. 
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In the study of disease biology and the 
pathogenesis of disease, much effort is given 
to elucidating and validating new pathways. 
It is relatively uncommon to actually trace 
pathways all the way back to identify how 
toxicant exposures, to individual toxicants 
or to mixtures, could lead to disturbances in 
these molecular regulatory systems.

At present, there has been no clear 
explanation for the differences reported in 
epidemiological studies for POP exposures 
and T2D. The apparent inconsistencies may 
be related to the idea that POPs are involved 
in the pathogenesis of T2D by interfering 
with endocrine signaling pathways. Low-dose 
effects have been proposed as possible biolog-
ical responses to POPs as endocrine disrup-
tors (Vandenberg et al. 2012). Endocrine 
function generally declines with age because 
hormone receptors become less sensitive, and 
levels of most hormones change with age 
(Chahal and Drake 2007). Therefore, the 
different age distributions among study popu-
lations might have led to the different results, 
even when similar concentrations of POPs 
were compared. In addition, the endocrine-
disturbing effects of a specific POP might 
differ relative to the presence and concentra-
tions of other potential endocrine disruptors. 
Inconsistences across studies may also have 
been caused by the underlying risk (nutrition, 
polymorphism, non-chemical stressors, and 
diseases) as well as by the endocrine state (sex, 
menopausal status) in the study population. 
Humans are exposed to a mixture of various 
POPs, and exposure patterns are unique to 
each study population. Although concentra-
tions of a particular POP might be similar 
between two populations, the strength of 
association between that POP and diabetes 
can differ depending on the concentrations 
of other POPs. The POPs investigated in the 
present study are lipophilic and have similar 
pharmacokinetic behavior in the body, which 
means they have the potential to interact and 
to influence the overall joint toxicity, so they 
should be considered as mixtures instead of 
on an individual basis. Hence, we need highly 
sophisticated data analysis tools to correlate 
multi-chemical POP exposure and the health 
effects observed in epidemiological studies.

Novel methods of analysis including 
machine learning, bioinformatics, and 
systems biology tools are available and can be 
used to identify specific outcome pathways 
from complex data (Minihane et al. 2015). 
These technologies can help identify specific 
and sensitive biomarkers, as proposed in 
our study. This type of cluster identifica-
tion of biomarkers as signatures of exposure 
to chemical mixtures could help advance the 
development of methods of mixtures risk 
assessment. Epidemiological studies need 
to assess inflammatory markers related to 

metabolic diseases; therefore, the sensitivity 
and specificity of these available biomarkers, 
which are influenced by a range of modi-
fying factors (chemical mixture compo-
nents, age, sex, diet, disease, gut biota, etc.), 
can be studied using multiple sophisticated 
techniques. Innovative markers of inflamma-
tion could be developed for use in human 
population studies and disease preven-
tion and for clinical use to detect multiple 
chemical exposures.

The resulting global network of common 
downstream activation targets was signifi-
cantly enriched with metabolic disease–related 
targets. Interestingly, neoplasms were also 
over-represented among the common targets, 
with transcription factors, receptor tyrosine 
kinases, and cyclin genes identified by our 
queries. This common pathway could guide 
our understanding of the potential carcino-
genic  mechanisms shared by the POPs.

The final network presents a novel systems 
biology and toxicology model of different 
molecular mechanisms of POP action that 
point to common disease outcomes. Future 
experimental evaluation of this model might 
lead to the development of new predictive 
markers of POP effects that could translate 
into new strategies for disease prevention and 
clinical use. Specific avenues of laboratory 
research might include, but are not limited 
to, in vitro studies of target cell populations 
such as liver cells and adipocytes; moreover, 
cell-line studies can be performed using 
pancreatic cells, hepatocytes, and brown 
adipocytes. Complementary in vivo studies 
in both normal and obese mouse strains 
dosed with POPs could be performed to 
determine whether the observed in vitro 
study findings are also observed after in vivo 
exposure. In addition, studies could be 
performed using transgenic mouse models 
with human fatty acid metabolism genes as 
well as with other potential monogenic or 
polygenic rodent models. Both in vitro and 
in vivo studies should be conducted using 
exposure to the three selected POPs on an 
individual or mixture basis using a facto-
rial design approach. Specific receptors or 
pathway nodes of interest identified using 
these combined in silico laboratory model 
approaches could be technically evaluated 
using genomic, proteomic, or metabolomic 
methods. Putative biomarkers identified by 
these combined approaches could be further 
developed/translated into commercial test kits 
for clinical applications.

Conclusion
We examined three representative POPs and 
their potential combined effects via possible 
protein–protein interactions. Our results, 
obtained using the inflammatory biomarkers 
pathway, showed that looking beyond the 

pathway for an individual chemical reveals 
a complex network of pathways that could 
be the basis of a mechanism of joint toxicity 
of mixtures. Hence, the body burden of 
chemical mixtures, particularly mixtures of 
lipophilic chemicals such as POPs, should 
be considered within the larger framework 
of diabetes, metabolic syndrome, and other 
chronic diseases. Biomarkers identified 
through such pathway analyses could be 
studied thoroughly and used to test real-world 
mixture exposures. Further investigations 
of the influence of factors such as multiple 
chemical exposures, nutrition, age, sex, and 
genetic variations will help develop personal-
ized, specific treatment protocols for these 
complex diseases.
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